121 research outputs found

    Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters

    Get PDF
    Our study focuses on a family of ubiquitously expressed human C₂H₂ zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11–13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C₂H₂ zinc finger proteins

    Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters

    Get PDF
    Our study focuses on a family of ubiquitously expressed human C₂H₂ zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11–13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C₂H₂ zinc finger proteins

    Encoding of Temporal Information by Timing, Rate, and Place in Cat Auditory Cortex

    Get PDF
    A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1) the event-locked spike-timing precision, 2) the mean firing rate, and 3) the interspike interval (ISI). To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF) to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis

    Natural vocalizations in the mammalian inferior colliculus are broadly encoded by a small number of independent multi-unit clusters

    Get PDF
    How complex natural sounds are represented by the main converging center of the auditory midbrain, the central inferior colliculus, is an open question. We applied neural discrimination to determine the variation of detailed encoding of individual vocalizations across the best frequency gradient of the central inferior colliculus. The analysis was based on collective responses from several neurons. These multi-unit spike trains were recorded from guinea pigs exposed to a spectrotemporally rich set of eleven species-specific vocalizations. Spike trains of disparate units from the same recording were combined in order to investigate whether groups of multi-unit clusters represent the whole set of vocalizations more reliably than only one unit, and whether temporal response correlations between them facilitate an unambiguous neural representation of the vocalizations. We found a spatial distribution of the capability to accurately encode groups of vocalizations across the best frequency gradient. Different vocalizations are optimally discriminated at different locations of the best frequency gradient. Furthermore, groups of a few multi-unit clusters yield improved discrimination over only one multi-unit cluster between all tested vocalizations. However, temporal response correlations between units do not yield better discrimination. Our study is based on a large set of units of simultaneously recorded responses from several guinea pigs and electrode insertion positions. Our findings suggest abroadly distributed code for behaviorally relevant vocalizations in the mammalian inferior colliculus.Responses from a few non-interacting units are sufficient to faithfully represent the whole set of studied vocalizations with diverse spectrotemporal properties

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Exome chip analysis identifies low-frequency and rare variants in MRPL38 for white matter hyperintensities on brain MRI

    Get PDF
    International audienc

    Topographic Spread of Inferior Colliculus Activation in Response to Acoustic and Intracochlear Electric Stimulation

    Full text link
    The design of contemporary multichannel cochlear implants is predicated on the presumption that they activate multiple independent sectors of the auditory nerve array. The independence of these channels, however, is limited by the spread of activation from each intracochlear electrode across the auditory nerve array. In this study, we evaluated factors that influence intracochlear spread of activation using two types of intracochlear electrodes: (1) a clinical-type device consisting of a linear series of ring contacts positioned along a silicon elastomer carrier, and (2) a pair of visually placed (VP) ball electrodes that could be positioned independently relative to particular intracochlear structures, e.g., the spiral ganglion. Activation spread was estimated by recording multineuronal evoked activity along the cochleotopic axis of the central nucleus of the inferior colliculus (ICC). This activity was recorded using silicon-based single-shank, 16-site recording probes, which were fixed within the ICC at a depth defined by responses to acoustic tones. After deafening, electric stimuli consisting of single biphasic electric pulses were presented with each electrode type in various stimulation configurations (monopolar, bipolar, tripolar) and/or various electrode orientations (radial, off-radial, longitudinal). The results indicate that monopolar (MP) stimulation with either electrode type produced widepread excitation across the ICC. Bipolar (BP) stimulation with banded pairs of electrodes oriented longitudinally produced activation that was somewhat less broad than MP stimulation, and tripolar (TP) stimulation produced activation that was more restricted than MP or BP stimulation. Bipolar stimulation with radially oriented pairs of VP ball electrodes produced the most restricted activation. The activity patterns evoked by radial VP balls were comparable to those produced by pure tones in normal-hearing animals. Variations in distance between radially oriented VP balls had little effect on activation spread, although increases in interelectrode spacing tended to reduce thresholds. Bipolar stimulation with longitudinally oriented VP electrodes produced broad activation that tended to broaden as the separation between electrodes increased.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41383/1/10162_2004_Article_4026.pd
    • …
    corecore